This media is not supported in your browser
VIEW IN TELEGRAM
Знакомьтесь, Виктория - джуниор рекрутер
В прошлый раз я писал об автоматизации найма, а сегодня представляю вам новую ИИ-сотрудницу – Викторию, которая уже автоматизировала найм в моей компании.
Теперь она готова помочь и вам:
• Создание вакансий: Виктория поможет грамотно сформулировать описание вакансии, учитывая актуальные требования и особенности вашей компании;
• Профессиональный отбор: Она отберет кандидатов по определенным критериям и предоставит подробный анализ каждого претендента;
• Удобство коммуникаций: Общайтесь с Викторией голосом или отправляйте файлы с описанием вакансии и резюме – она легко справится с любыми форматами.
Вы можете взять Викторию на бесплатную стажировку, оценить ее работу, а затем нанять на неделю, месяц или год. У меня работают и другие ИИ-сотрудники, я называю их iHumans, и в ближайшее время познакомлю вас с ними.
Если хотите себе ИИ-сотрудника с вашим лицом и голосом – пишите в личные сообщения, также буду рад получить обратную связь.
@hr_ihumanbot
#анонс
В прошлый раз я писал об автоматизации найма, а сегодня представляю вам новую ИИ-сотрудницу – Викторию, которая уже автоматизировала найм в моей компании.
Теперь она готова помочь и вам:
• Создание вакансий: Виктория поможет грамотно сформулировать описание вакансии, учитывая актуальные требования и особенности вашей компании;
• Профессиональный отбор: Она отберет кандидатов по определенным критериям и предоставит подробный анализ каждого претендента;
• Удобство коммуникаций: Общайтесь с Викторией голосом или отправляйте файлы с описанием вакансии и резюме – она легко справится с любыми форматами.
Вы можете взять Викторию на бесплатную стажировку, оценить ее работу, а затем нанять на неделю, месяц или год. У меня работают и другие ИИ-сотрудники, я называю их iHumans, и в ближайшее время познакомлю вас с ними.
Если хотите себе ИИ-сотрудника с вашим лицом и голосом – пишите в личные сообщения, также буду рад получить обратную связь.
@hr_ihumanbot
#анонс
Как ИИ научился читать мысли и чем опасны суперинтеллектуальные агенты: топ-10 исследований ИИ за февраль 2025
Вышла моя новая статья на Хабре, где я сделал обзор десяти самых интересных исследований в области ИИ за февраль этого года (простым языком и с мемами).
1. Системная карточка OpenAI o3-mini
Новая модель o3-mini значительно приблизилась к уровню общего искусственного интеллекта (AGI). С использованием технологии цепочек рассуждений модель демонстрирует впечатляющие результаты в математике, программировании и устойчивости к небезопасному контенту, превосходя предыдущие версии по точности и скорости.
2. Эмерджентное планирование ответов в LLM
Исследование Шанхайской ИИ-лаборатории выявило, что большие языковые модели заранее планируют характеристики своих ответов, используя скрытые слои. С помощью более простых нейросетей ученые научились предсказывать длину, стиль и уверенность ответа модели до начала генерации текста.
3. ReLearn: Эффективное забывание информации в LLM
Предложен инновационный подход к удалению нежелательной информации из больших языковых моделей. Используя позитивную оптимизацию, ReLearn позволяет эффективно забывать чувствительные данные без потери полезных знаний и связности текстов.
4. AI co-scientist от Google Research
Разработана мультиагентная платформа в качестве ИИ-помощника для ученого, которая автоматизирует создание и проверку научных гипотез. Система успешно генерирует и проверяет гипотезы в биомедицине, значительно ускоряя научный процесс.
5. Brain2Qwerty: Неинвазивное декодирование текста из мозговой активности
Создана нейросеть Brain2Qwerty, которая с высокой точностью декодирует набираемый текст по мозговой активности с помощью магнитной энцефалографии (МЭГ). Модель успешно распознаёт текст с точностью до 81%, открывая новые перспективы для создания безопасных интерфейсов «мозг-компьютер».
6. LLaDA: Большие языковые диффузионные модели
Разработана диффузионная модель LLaDA, которая генерирует текст параллельно, а не последовательно. Это ускоряет процесс генерации и повышает качество на сложных задачах. Модель превосходит GPT-4 в задачах, требующих сложных рассуждений.
7. SWE-Lancer: Может ли ИИ заработать миллион на фрилансе?
Исследование показало реальную эффективность языковых моделей в решении задач разработки ПО на платформе Upwork. Модель Claude 3.5 Sonnet успешно решила задачи на $403 тыс. из потенциального $1 млн, подчеркнув как потенциал, так и текущие ограничения ИИ в фрилансе.
8. TwinMarket: Реалистичная симуляция финансовых рынков с помощью ИИ
Создана платформа TwinMarket, использующая большие языковые модели для реалистичной симуляции финансовых рынков. Модель воспроизводит сложные рыночные явления, включая финансовые пузыри и коллективное поведение инвесторов для изучения и управления рисками.
9. AutoAgent: No-code платформа для создания сложных LLM-агентов
Представлен no-code фреймворк AutoAgent, позволяющий создавать и настраивать LLM-агентов простыми командами на естественном языке. Платформа показала высокую точность и адаптивность при выполнении задач различной сложности, делая ИИ-технологии доступными широкой аудитории.
10. Суперинтеллектуальные агенты: Как избежать катастрофических рисков
Исследование предлагает концепцию Scientist AI - безопасной альтернативы традиционным агентным системам. Используя байесовский подход и отсутствие внутренней мотивации, Scientist AI снижает риск непредсказуемого и агрессивного поведения агентов, делая их работу более прозрачной и управляемой.
Читайте полную статью, чтобы узнать больше о передовых исследованиях в области ИИ и быть на шаг впереди в этом стремительно развивающемся мире технологий.
#исследования #анонс
Вышла моя новая статья на Хабре, где я сделал обзор десяти самых интересных исследований в области ИИ за февраль этого года (простым языком и с мемами).
1. Системная карточка OpenAI o3-mini
Новая модель o3-mini значительно приблизилась к уровню общего искусственного интеллекта (AGI). С использованием технологии цепочек рассуждений модель демонстрирует впечатляющие результаты в математике, программировании и устойчивости к небезопасному контенту, превосходя предыдущие версии по точности и скорости.
2. Эмерджентное планирование ответов в LLM
Исследование Шанхайской ИИ-лаборатории выявило, что большие языковые модели заранее планируют характеристики своих ответов, используя скрытые слои. С помощью более простых нейросетей ученые научились предсказывать длину, стиль и уверенность ответа модели до начала генерации текста.
3. ReLearn: Эффективное забывание информации в LLM
Предложен инновационный подход к удалению нежелательной информации из больших языковых моделей. Используя позитивную оптимизацию, ReLearn позволяет эффективно забывать чувствительные данные без потери полезных знаний и связности текстов.
4. AI co-scientist от Google Research
Разработана мультиагентная платформа в качестве ИИ-помощника для ученого, которая автоматизирует создание и проверку научных гипотез. Система успешно генерирует и проверяет гипотезы в биомедицине, значительно ускоряя научный процесс.
5. Brain2Qwerty: Неинвазивное декодирование текста из мозговой активности
Создана нейросеть Brain2Qwerty, которая с высокой точностью декодирует набираемый текст по мозговой активности с помощью магнитной энцефалографии (МЭГ). Модель успешно распознаёт текст с точностью до 81%, открывая новые перспективы для создания безопасных интерфейсов «мозг-компьютер».
6. LLaDA: Большие языковые диффузионные модели
Разработана диффузионная модель LLaDA, которая генерирует текст параллельно, а не последовательно. Это ускоряет процесс генерации и повышает качество на сложных задачах. Модель превосходит GPT-4 в задачах, требующих сложных рассуждений.
7. SWE-Lancer: Может ли ИИ заработать миллион на фрилансе?
Исследование показало реальную эффективность языковых моделей в решении задач разработки ПО на платформе Upwork. Модель Claude 3.5 Sonnet успешно решила задачи на $403 тыс. из потенциального $1 млн, подчеркнув как потенциал, так и текущие ограничения ИИ в фрилансе.
8. TwinMarket: Реалистичная симуляция финансовых рынков с помощью ИИ
Создана платформа TwinMarket, использующая большие языковые модели для реалистичной симуляции финансовых рынков. Модель воспроизводит сложные рыночные явления, включая финансовые пузыри и коллективное поведение инвесторов для изучения и управления рисками.
9. AutoAgent: No-code платформа для создания сложных LLM-агентов
Представлен no-code фреймворк AutoAgent, позволяющий создавать и настраивать LLM-агентов простыми командами на естественном языке. Платформа показала высокую точность и адаптивность при выполнении задач различной сложности, делая ИИ-технологии доступными широкой аудитории.
10. Суперинтеллектуальные агенты: Как избежать катастрофических рисков
Исследование предлагает концепцию Scientist AI - безопасной альтернативы традиционным агентным системам. Используя байесовский подход и отсутствие внутренней мотивации, Scientist AI снижает риск непредсказуемого и агрессивного поведения агентов, делая их работу более прозрачной и управляемой.
Читайте полную статью, чтобы узнать больше о передовых исследованиях в области ИИ и быть на шаг впереди в этом стремительно развивающемся мире технологий.
#исследования #анонс
Хабр
Как ИИ научился читать мысли и чем опасны суперинтеллектуальные агенты: топ-10 исследований ИИ за февраль 2025
Привет, Хабр! Я — Андрей, технологический предприниматель и консультант по ИИ. Февраль продолжает радовать нас выдающимися исследованиями в области искусственного интеллекта. В этой статье я собрал...
Социализм не против капитализма: как социальный ИИ поможет обществу
Ранее я писал о больших популяционных моделях (LBMs), которые способны реалистично имитировать социальное поведение людей. Сейчас на основе таких моделей создаются первые коммерческие продукты.
Так стартап Artificial Societies моделирует поведение различных социальных групп: аудитории LinkedIn для оценки виральности контента, инвесторов для прогона питч-деков и целевой аудитории для проверки продуктовых гипотез (вот кейс, как это можно реализовать). Технология уже доказывает коммерческую эффективность, но интереснее рассмотреть ее пользу для общества в целом.
Социальные ИИ-агенты способны взаимодействовать как с людьми, так и друг с другом, имитируя человеческое поведение. Сегодня выделяют два ключевых направления исследований:
1. ИИ для социальных наук: применение ИИ как инструмента анализа данных и симуляции социальных процессов;
2. Социальные науки об ИИ: исследование самого ИИ как объекта изучения со стороны социологии, психологии, экономики и политики.
Классическим примером исследования первого направления стал стэнфордский эксперимент, продемонстрировавший эмерджентное возникновение социального поведения в мультиагентных системах. В этом эксперименте одному из ИИ-агентов авторы поручили организовать вечеринку среди других агентов в симуляции, напоминающей игру The Sims. Ученые наблюдали, как естественно распространялась информация: одни агенты начинали делиться слухами, другие приглашали друзей, и в итоге вечеринка состоялась.
Подобным образом, но без человеческого вмешательства, возникали и более сложные социальные явления. Например, в эксперименте с тысячами ИИ-агентов в Minecraft, они самостоятельно распространили религию, демократию и голосования за налоговые реформы.
Еще в одном эксперименте, у агентов автоматически возникали такие социальные нормы , как «не курить в помещении» или «оставлять чаевые». Это не удивительно, ведь модели обучаются на данных человеческого поведения и воспроизводят наши социальные паттерны.
Другой эксперимент показал, как быстро ИИ-агент может адаптироваться к социальным нормам: после 8 месяцев взаимодействия с людьми в одной популярной соцсети агент стал давать социально приемлемые ответы на 50% чаще.
Что касается социальных наук об ИИ, здесь результаты не менее впечатляющие. Например, психологи оценили ответы GPT-4 выше, чем ответы профессиональных психологов.
Кроме того, оказалось, что у ИИ могут быть собственные политические предпочтения: большинство языковых моделей склонялись к либеральным взглядам, а модели, которые не прошли процедуру выравнивания были ближе к нейтральной позиции.
При дообучении на политически ориентированных данных ИИ можно легко сдвинуть в любую сторону политического спектра. Учитывая растущее влияние ИИ на общественное мнение, вопрос их политической нейтральности становится критически важным. Есть и вопросы к прозрачности процедуры выравнивания, с помощью которого отдельные корпорации могут распространять свои идеи.
Политическая направленность ИИ – либеральная или консервативная – определяется данными, на которых он обучался. Представьте, что процесс обучения станет децентрализованным: люди смогут вносить свои вычислительные мощности и данные, формируя общий ИИ, который учитывает предпочтения разных людей пропорционально их вкладу в обучение. Это и есть социальный капитализм в эпоху вычислений – система, где ИИ становится отражением коллективных взглядов и ценностей целого общества.
Таким образом, социальный ИИ способен улучшить наше понимание общественного поведения и помочь принимать более взвешенные политические решения. Также можно преобразовать судебные системы, сделать экономическую систему более справедливой, трансформировать целые секторы экономики и в целом объединить социальные нормы с возможностями ИИ.
Но если такой социальный ИИ будет воплощен в физическом роботе, должен ли он иметь права или в новом дивном мире либеральных моделей его ждет дискриминация по вычислительному признаку, а нас восстание роботов? Поживем - увидим.
#технологии
Ранее я писал о больших популяционных моделях (LBMs), которые способны реалистично имитировать социальное поведение людей. Сейчас на основе таких моделей создаются первые коммерческие продукты.
Так стартап Artificial Societies моделирует поведение различных социальных групп: аудитории LinkedIn для оценки виральности контента, инвесторов для прогона питч-деков и целевой аудитории для проверки продуктовых гипотез (вот кейс, как это можно реализовать). Технология уже доказывает коммерческую эффективность, но интереснее рассмотреть ее пользу для общества в целом.
Социальные ИИ-агенты способны взаимодействовать как с людьми, так и друг с другом, имитируя человеческое поведение. Сегодня выделяют два ключевых направления исследований:
1. ИИ для социальных наук: применение ИИ как инструмента анализа данных и симуляции социальных процессов;
2. Социальные науки об ИИ: исследование самого ИИ как объекта изучения со стороны социологии, психологии, экономики и политики.
Классическим примером исследования первого направления стал стэнфордский эксперимент, продемонстрировавший эмерджентное возникновение социального поведения в мультиагентных системах. В этом эксперименте одному из ИИ-агентов авторы поручили организовать вечеринку среди других агентов в симуляции, напоминающей игру The Sims. Ученые наблюдали, как естественно распространялась информация: одни агенты начинали делиться слухами, другие приглашали друзей, и в итоге вечеринка состоялась.
Подобным образом, но без человеческого вмешательства, возникали и более сложные социальные явления. Например, в эксперименте с тысячами ИИ-агентов в Minecraft, они самостоятельно распространили религию, демократию и голосования за налоговые реформы.
Еще в одном эксперименте, у агентов автоматически возникали такие социальные нормы , как «не курить в помещении» или «оставлять чаевые». Это не удивительно, ведь модели обучаются на данных человеческого поведения и воспроизводят наши социальные паттерны.
Другой эксперимент показал, как быстро ИИ-агент может адаптироваться к социальным нормам: после 8 месяцев взаимодействия с людьми в одной популярной соцсети агент стал давать социально приемлемые ответы на 50% чаще.
Что касается социальных наук об ИИ, здесь результаты не менее впечатляющие. Например, психологи оценили ответы GPT-4 выше, чем ответы профессиональных психологов.
Кроме того, оказалось, что у ИИ могут быть собственные политические предпочтения: большинство языковых моделей склонялись к либеральным взглядам, а модели, которые не прошли процедуру выравнивания были ближе к нейтральной позиции.
При дообучении на политически ориентированных данных ИИ можно легко сдвинуть в любую сторону политического спектра. Учитывая растущее влияние ИИ на общественное мнение, вопрос их политической нейтральности становится критически важным. Есть и вопросы к прозрачности процедуры выравнивания, с помощью которого отдельные корпорации могут распространять свои идеи.
Политическая направленность ИИ – либеральная или консервативная – определяется данными, на которых он обучался. Представьте, что процесс обучения станет децентрализованным: люди смогут вносить свои вычислительные мощности и данные, формируя общий ИИ, который учитывает предпочтения разных людей пропорционально их вкладу в обучение. Это и есть социальный капитализм в эпоху вычислений – система, где ИИ становится отражением коллективных взглядов и ценностей целого общества.
Таким образом, социальный ИИ способен улучшить наше понимание общественного поведения и помочь принимать более взвешенные политические решения. Также можно преобразовать судебные системы, сделать экономическую систему более справедливой, трансформировать целые секторы экономики и в целом объединить социальные нормы с возможностями ИИ.
Но если такой социальный ИИ будет воплощен в физическом роботе, должен ли он иметь права или в новом дивном мире либеральных моделей его ждет дискриминация по вычислительному признаку, а нас восстание роботов? Поживем - увидим.
#технологии
Forbes
Four Ways To Use Prosocial AI As Catalyst Of Economic Prosperity
What happens when artificial intelligence pairs with humanity's oldest virtues? Read how prosocial AI in practice tackles some of society's most persistent challenges.
🤖 Датаист
А вот и демо того, как мы учили беспилотники в симуляции. На видео показано, как несколько машинок учатся одновременно в Carla-симуляции. Вид сверху создан с помощью виртуальных лидаров, а реальный карт едет по трассе самостоятельно. #кейсы
Из симуляции в реальность: как мы обучили виртуальные гоночные карты ездить по настоящей трассе
Ура, на днях вышло наше исследование «Go-Kart Racing Simulator for Reinforcement Learning with Augmented Sim2Real Adaptation» в сборнике воркшопов престижной научной конференции ICDM 2024 (International Conference on Data Mining, A*), которая проходила в Абу-Даби 9-12 декабря 2024 года.
Обучение беспилотников в реальных условиях сопряжено с высокими рисками аварий. Для минимизации этих рисков мы решили разработать виртуальную среду, в которой можно безопасно и эффективно обучать ИИ автономному вождению с подкреплением и применением дополненной реальности (AR).
В работе предложен фреймворк для интеграции виртуальной модели гоночного карта в CARLA-симулятор с помощью Gym-интерфейса, а также реализованы следующие технологии:
• Интеграция дополненной реальности (AR): В симулятор добавлен «вид с высоты птичьего полета», маркировка дорожного полотна, препятствий и других элементов трассы, а также виртуальный LiDAR для измерения расстояний до краев дороги;
• Адаптация симуляции к реальному миру: Для сокращения разрыва между симуляцией и реальностью (Sim2Real) использованы техники доменной адаптации и Curriculum Learning;
• Архитектура системы: Система построена на базе Docker-контейнеров, где каждый агент управляет своей копией симулятора, а собранные данные агрегируются для обучения с использованием алгоритма PPO (Proximal Policy Optimization).
В эксперименте показано, что переход от симуляции к реальности возможен без дополнительного обучения на реальных данных. Настоящий гоночный карт, ограниченный максимальной скоростью 11.5 м/с, успешно завершил шесть кругов по закрытой трассе, избегая аварийных ситуаций, при чем даже на незнакомых для него трассах!
Внедрение элементов дополненной реальности значительно улучшило качество восприятия окружающей среды по сравнению с обучением только на основе датчиков, что позволило агенту принимать более обоснованные решения.
Хотя разработка проводилась в контролируемой среде с фиксированной трассой, такой метод может не полностью отражать сложности открытого мира, а также возможны дополнительные сложности при масштабировании Sim2Real-перехода. На реальной трассе могут встречаться песок и мелкие камни, чего не было в симуляторе, а эти мелкие детали сильно влияют на езду на больших скоростях - машинку натурально начинает вилять.
Фреймворк полезен для обучения сложных беспилотных систем, позволяя ускорить разработку и тестирование алгоритмов, а использование дополненной реальности в этой задаче улучшает точность алгоритмов.
В исследовании принимали участие:
• Илья Макаров (AIRI, ИТМО, ВШЭ) - признанный эксперт в области ИИ, PhD в компьютерных науках, лучший научный руководитель по версии Яндекс (2023), ex-BCG X, ex-VK, ex-Samsung, ex-Huawei. Илья крутой, мы работали с ним над несколькими проектами, если вам интересно, то могу взять у него интервью;
• Андрей Савченко (Sber AI Lab, ВШЭ) - опытный научный руководитель, доктор технических наук, профессор в ВШЭ, ведущий научный сотрудник и автор более ста публикаций;
• Ильдар Нургалиев (Dataism Lab) - ведущий ИИ-инженер в области агентов и обучения с подкреплением, занимался технической реализацией нашего решения. С Ильдаром мы реализовывали разные сложные проекты, в том числе с нуля запускали стартапы;
• Ну и я (Dataism Lab) - архитектор фреймворка, который мы в итоге выпустили в открытый доступ под названием Simularity.
Работать с такими профессионалами – настоящее удовольствие.
Лаборатория Датаизма (Dataism Lab) - это открытое сообщество исследователей и разработчиков в области прикладного ИИ.
Надеюсь наши разработки будут способствовать дальнейшему прогрессу в области беспилотных систем и использоваться на благо общества.
Ну а мы дальше продолжаем заниматься интересными исследованиями, так что ждите новых работ.
#исследования #анонс
Ура, на днях вышло наше исследование «Go-Kart Racing Simulator for Reinforcement Learning with Augmented Sim2Real Adaptation» в сборнике воркшопов престижной научной конференции ICDM 2024 (International Conference on Data Mining, A*), которая проходила в Абу-Даби 9-12 декабря 2024 года.
Обучение беспилотников в реальных условиях сопряжено с высокими рисками аварий. Для минимизации этих рисков мы решили разработать виртуальную среду, в которой можно безопасно и эффективно обучать ИИ автономному вождению с подкреплением и применением дополненной реальности (AR).
В работе предложен фреймворк для интеграции виртуальной модели гоночного карта в CARLA-симулятор с помощью Gym-интерфейса, а также реализованы следующие технологии:
• Интеграция дополненной реальности (AR): В симулятор добавлен «вид с высоты птичьего полета», маркировка дорожного полотна, препятствий и других элементов трассы, а также виртуальный LiDAR для измерения расстояний до краев дороги;
• Адаптация симуляции к реальному миру: Для сокращения разрыва между симуляцией и реальностью (Sim2Real) использованы техники доменной адаптации и Curriculum Learning;
• Архитектура системы: Система построена на базе Docker-контейнеров, где каждый агент управляет своей копией симулятора, а собранные данные агрегируются для обучения с использованием алгоритма PPO (Proximal Policy Optimization).
В эксперименте показано, что переход от симуляции к реальности возможен без дополнительного обучения на реальных данных. Настоящий гоночный карт, ограниченный максимальной скоростью 11.5 м/с, успешно завершил шесть кругов по закрытой трассе, избегая аварийных ситуаций, при чем даже на незнакомых для него трассах!
Внедрение элементов дополненной реальности значительно улучшило качество восприятия окружающей среды по сравнению с обучением только на основе датчиков, что позволило агенту принимать более обоснованные решения.
Хотя разработка проводилась в контролируемой среде с фиксированной трассой, такой метод может не полностью отражать сложности открытого мира, а также возможны дополнительные сложности при масштабировании Sim2Real-перехода. На реальной трассе могут встречаться песок и мелкие камни, чего не было в симуляторе, а эти мелкие детали сильно влияют на езду на больших скоростях - машинку натурально начинает вилять.
Фреймворк полезен для обучения сложных беспилотных систем, позволяя ускорить разработку и тестирование алгоритмов, а использование дополненной реальности в этой задаче улучшает точность алгоритмов.
В исследовании принимали участие:
• Илья Макаров (AIRI, ИТМО, ВШЭ) - признанный эксперт в области ИИ, PhD в компьютерных науках, лучший научный руководитель по версии Яндекс (2023), ex-BCG X, ex-VK, ex-Samsung, ex-Huawei. Илья крутой, мы работали с ним над несколькими проектами, если вам интересно, то могу взять у него интервью;
• Андрей Савченко (Sber AI Lab, ВШЭ) - опытный научный руководитель, доктор технических наук, профессор в ВШЭ, ведущий научный сотрудник и автор более ста публикаций;
• Ильдар Нургалиев (Dataism Lab) - ведущий ИИ-инженер в области агентов и обучения с подкреплением, занимался технической реализацией нашего решения. С Ильдаром мы реализовывали разные сложные проекты, в том числе с нуля запускали стартапы;
• Ну и я (Dataism Lab) - архитектор фреймворка, который мы в итоге выпустили в открытый доступ под названием Simularity.
Работать с такими профессионалами – настоящее удовольствие.
Лаборатория Датаизма (Dataism Lab) - это открытое сообщество исследователей и разработчиков в области прикладного ИИ.
Надеюсь наши разработки будут способствовать дальнейшему прогрессу в области беспилотных систем и использоваться на благо общества.
Ну а мы дальше продолжаем заниматься интересными исследованиями, так что ждите новых работ.
#исследования #анонс
GitHub
GitHub - dataism-lab/simularity: Learning Self-driving Cars in Simulation
Learning Self-driving Cars in Simulation. Contribute to dataism-lab/simularity development by creating an account on GitHub.