Природа интеллекта: что значит быть человеком?
Совсем недавно ИИ умел решать лишь “узкие” задачи, но со временем он стал более универсальным. Сегодня мы слышим, что OpenAI уже знает, как достичь AGI — «общего» ИИ, сравнимого или даже превосходящего человека в отдельных задачах, и рассуждает о создании суперинтеллекта — самообучающейся системы, способной полностью превзойти человеческий интеллект.
Прошлогодний Нобелевский лауреат по физике и один из пионеров в области нейронных сетей, Джеффри Хинтон утверждает, что цифровой интеллект имеет шансы потеснить биологический и даже «заменить» нас.
Хинтон выделяет «две тропы к интеллекту»:
1. Цифровой путь (бессмертные вычисления). Знания (веса нейросети) хранятся в цифровом виде и копируются на другие серверы, делая такой интеллект практически «бессмертным». Благодаря эффекту масштаба тысячи копий сети могут обучаться на разных наборах данных и затем обмениваться градиентами, получая совокупный опыт, недоступный одному человеческому мозгу.
2. Биологический путь (смертные вычисления). Мозг умирает вместе с нейронами; знания передаются через язык и культуру. Из‑за «дистилляции» знаний обучение в биологической системе идет медленнее и с меньшей глубиной, чем при цифровых методах. Однако биологический мозг выигрывает в энергоэффективности.
Ранее Хинтон предполагал, что у людей существует особый алгоритм, найденный эволюцией, но теперь считает, что простой метод обратного распространения ошибки может оказаться эффективнее многомиллионных биологических механизмов обучения. Отсюда и тревога: цифровой интеллект растёт экспоненциально. Хинтон говорит: «Мы лишь переходная ступень эволюции интеллекта».
Хотя строгого определения “интеллекта” нет, мы понимаем, что это способность агента решать задачи на основе внутренней модели знаний. Интеллект часто пытаются измерить с помощью IQ-тестов, которые изначально применялись для иных целей: во Франции — чтобы выявлять учеников, нуждающихся в дополнительной помощи, а в США — для отбора солдат. При этом IQ-тесты могут быть нестабильны во времени: сегодня у человека один результат, а через 10 лет — иной.
Результаты разных когнитивных тестов (вербальных, логических, пространственных и т.д.) коррелируют между собой. Это стало поводом предположить наличие общего g-фактора. Фактически он отражает «коэффициент умственной энергии» — способность обучаться и решать разные интеллектуальные задачи. При этом величина g‑фактора относительно стабильна в течение жизни и частично наследуется.
Существует и идея “Универсальной меры интеллекта” (Universal Intelligence Measure). Согласно ей, интеллект определяется как суммарное (усредненное с учетом сложности) качество выполнения агентом всех возможных задач во всех мыслимых средах. Однако на практике этот подход крайне труднореализуем из‑за колоссальной вычислительной сложности.
Также пытаются найти «единый показатель» для оценки ИИ. Например, тест Тьюринга выясняет, способна ли программа мыслить «как человек», но напрямую не измеряет интеллект. Есть и бенчмарк ARC-AGI (ожидается выход ARC-AGI 2), где проверяется способность к абстракции. Недавно модель o3 от OpenAI удивила всех, набрав в нем 87,5%.
Строго определить интеллект сложно, а сознание — тем более отдельная трудная проблема. Некоторые считают сознание эпифеноменом или вычислимым процессом. Потому вопросы о природе интеллекта и сознания стоит обсуждать раздельно. Отчасти писал об этом в этом посте.
Безусловно, уже сейчас эти умные штуки превосходят нас в отдельных задачах и, вероятно, будут превосходить во многих других. Быть человеком в наш век — это быть носителем «морального» и социального интеллекта, ведь мы обучаем ИИ на собственных данных и разметке.
Мы уже аугментировали себя цифровым мозгом с помощью гугла, а теперь пришло время воспользоваться еще более мощным инструментом для более широкого спектра задач. Переход к человеко-машинной цивилизации неизбежен, однако вопрос о том, как именно биологический и цифровой интеллекты будут взаимодействовать друг с другом, остаётся открытым.
#мысли
Совсем недавно ИИ умел решать лишь “узкие” задачи, но со временем он стал более универсальным. Сегодня мы слышим, что OpenAI уже знает, как достичь AGI — «общего» ИИ, сравнимого или даже превосходящего человека в отдельных задачах, и рассуждает о создании суперинтеллекта — самообучающейся системы, способной полностью превзойти человеческий интеллект.
Прошлогодний Нобелевский лауреат по физике и один из пионеров в области нейронных сетей, Джеффри Хинтон утверждает, что цифровой интеллект имеет шансы потеснить биологический и даже «заменить» нас.
Хинтон выделяет «две тропы к интеллекту»:
1. Цифровой путь (бессмертные вычисления). Знания (веса нейросети) хранятся в цифровом виде и копируются на другие серверы, делая такой интеллект практически «бессмертным». Благодаря эффекту масштаба тысячи копий сети могут обучаться на разных наборах данных и затем обмениваться градиентами, получая совокупный опыт, недоступный одному человеческому мозгу.
2. Биологический путь (смертные вычисления). Мозг умирает вместе с нейронами; знания передаются через язык и культуру. Из‑за «дистилляции» знаний обучение в биологической системе идет медленнее и с меньшей глубиной, чем при цифровых методах. Однако биологический мозг выигрывает в энергоэффективности.
Ранее Хинтон предполагал, что у людей существует особый алгоритм, найденный эволюцией, но теперь считает, что простой метод обратного распространения ошибки может оказаться эффективнее многомиллионных биологических механизмов обучения. Отсюда и тревога: цифровой интеллект растёт экспоненциально. Хинтон говорит: «Мы лишь переходная ступень эволюции интеллекта».
Хотя строгого определения “интеллекта” нет, мы понимаем, что это способность агента решать задачи на основе внутренней модели знаний. Интеллект часто пытаются измерить с помощью IQ-тестов, которые изначально применялись для иных целей: во Франции — чтобы выявлять учеников, нуждающихся в дополнительной помощи, а в США — для отбора солдат. При этом IQ-тесты могут быть нестабильны во времени: сегодня у человека один результат, а через 10 лет — иной.
Результаты разных когнитивных тестов (вербальных, логических, пространственных и т.д.) коррелируют между собой. Это стало поводом предположить наличие общего g-фактора. Фактически он отражает «коэффициент умственной энергии» — способность обучаться и решать разные интеллектуальные задачи. При этом величина g‑фактора относительно стабильна в течение жизни и частично наследуется.
Существует и идея “Универсальной меры интеллекта” (Universal Intelligence Measure). Согласно ей, интеллект определяется как суммарное (усредненное с учетом сложности) качество выполнения агентом всех возможных задач во всех мыслимых средах. Однако на практике этот подход крайне труднореализуем из‑за колоссальной вычислительной сложности.
Также пытаются найти «единый показатель» для оценки ИИ. Например, тест Тьюринга выясняет, способна ли программа мыслить «как человек», но напрямую не измеряет интеллект. Есть и бенчмарк ARC-AGI (ожидается выход ARC-AGI 2), где проверяется способность к абстракции. Недавно модель o3 от OpenAI удивила всех, набрав в нем 87,5%.
Строго определить интеллект сложно, а сознание — тем более отдельная трудная проблема. Некоторые считают сознание эпифеноменом или вычислимым процессом. Потому вопросы о природе интеллекта и сознания стоит обсуждать раздельно. Отчасти писал об этом в этом посте.
Безусловно, уже сейчас эти умные штуки превосходят нас в отдельных задачах и, вероятно, будут превосходить во многих других. Быть человеком в наш век — это быть носителем «морального» и социального интеллекта, ведь мы обучаем ИИ на собственных данных и разметке.
Мы уже аугментировали себя цифровым мозгом с помощью гугла, а теперь пришло время воспользоваться еще более мощным инструментом для более широкого спектра задач. Переход к человеко-машинной цивилизации неизбежен, однако вопрос о том, как именно биологический и цифровой интеллекты будут взаимодействовать друг с другом, остаётся открытым.
#мысли
Перспективный союз: почему ИИ и блокчейн нужны друг другу
В предыдущем посте я рассказывал про роль блокчейна в децентрализованном обучении ИИ. Однако есть еще несколько важных направлений, где на стыке ИИ и блокчейна возникает мощный синергетический эффект.
Борьба с фейками. Сегодня мир захлестывает волна синтетического контента и становится все сложнее отличить генерации от оригинала. Как не попасть в ловушку дипфейков?
Блокчейн предлагает один из способов проверки подлинности. Он использует распределенный реестр с криптографическими записями, временными метками и фиксацией первоисточника, которую невозможно подделать.
Важно понимать, что сам по себе блокчейн не определяет, был ли файл создан ИИ или обычной камерой (для этого нужны ИИ-детекторы), но он гарантирует, что уже записанные данные не могут быть изменены или удалены задним числом.
Прозрачность ИИ-агентов. «Рассуждающие» модели опираются не только на внутренние знания, но и на собственные «размышления». Если зафиксировать эти метаданные в блокчейне, разработчики ИИ-агентов смогут отслеживать логику принятия решений, выявлять ошибки и точнее дообучать модели. Это позволяет понять, по каким причинам тот или иной ИИ-агент пришел к определенному выводу в сложных роботизированных и IoT-системах.
Цифровая идентичность. Представьте, что у вас есть «цифровой двойник», который общается в сети от вашего имени, совершает транзакции и даже голосует в DAO. Чтобы такой агент не вышел из-под контроля, нужны четкие механизмы идентификации и ограничения прав — децентрализованная цифровая идентичность (DID). Вы указываете, где и как агент может действовать, а блокчейн подтверждает личность и сохраняет неизменность записей.
Интернет ончейн-агентов. В результате мы получаем целый «интернет агентов». Каждый пользователь создает ИИ-агента, обученного на собственных данных, и делегирует ему часть рутинных задач, а все действия фиксируются в распределенной сети.
В перспективе это приведет к созданию новой экономики интеллектуальных услуг. Пользователи будут отправлять запросы в сеть, а рой ИИ-агентов самостоятельно распределит задачи, выберет оптимальные методы и исполнителей, а затем выполнит работу.
Коллективная ответственность. Закрытые ИИ-модели напоминают «черный ящик», где все данные и алгоритмы контролирует одна корпорация. При децентрализованном обучении исходные данные распределены между участниками, и каждый может удостовериться в их подлинности. Ответственность за обучение делится между всеми, а не лежит на одном игроке.
Когда блокчейн-сеть использует вычислительные мощности не для поиска хешей, а для ИИ-задач, мы говорим о «майнинге вычислительных ресурсов». Это дает возможность тысячам частных узлов предоставить свои мощности для обучения ИИ и получать за это вознаграждение.
Думаю в ближайшее время появятся DAO для координации процесса обучения нейросетей. Они будут распределять вознаграждения и регулировать процесс на основе этических норм.
По-настоящему «умные» смарт-контракты. Сегодня смарт-контракты — это жестко прописанные правила, которые автоматически выполняются при соблюдении определенных условий.
Благодаря интеграции ИИ, можно анализировать данные в реальном времени, учитывать сложные факторы (рыночные условия, поведение пользователей, внешние события) и корректировать выполнение условий на лету.
Так появляются самообучающиеся смарт-контракты, которые повышают эффективность DeFi-протоколов, оптимизируют распределение ресурсов в DAO и автоматически выявляют подозрительные транзакции.
Синергия ИИ и блокчейна — это закономерный этап эволюции обеих технологий. Блокчейн обеспечивает прозрачность и безопасность, а ИИ дает возможность адаптивно управлять сетью и решать сложные задачи, ранее лежавшие на человеке.
В итоге мы получаем экосистему, в которой можно безопасно обучать модели, бороться с фейками в соцсетях и даже создавать ИИ-агентов, действующих от нашего имени.
При этом механизм коллективной ответственности подчеркивает важную мысль: «мы в ответе за тех ИИ-агентов, которых обучили».
#мысли
В предыдущем посте я рассказывал про роль блокчейна в децентрализованном обучении ИИ. Однако есть еще несколько важных направлений, где на стыке ИИ и блокчейна возникает мощный синергетический эффект.
Борьба с фейками. Сегодня мир захлестывает волна синтетического контента и становится все сложнее отличить генерации от оригинала. Как не попасть в ловушку дипфейков?
Блокчейн предлагает один из способов проверки подлинности. Он использует распределенный реестр с криптографическими записями, временными метками и фиксацией первоисточника, которую невозможно подделать.
Важно понимать, что сам по себе блокчейн не определяет, был ли файл создан ИИ или обычной камерой (для этого нужны ИИ-детекторы), но он гарантирует, что уже записанные данные не могут быть изменены или удалены задним числом.
Прозрачность ИИ-агентов. «Рассуждающие» модели опираются не только на внутренние знания, но и на собственные «размышления». Если зафиксировать эти метаданные в блокчейне, разработчики ИИ-агентов смогут отслеживать логику принятия решений, выявлять ошибки и точнее дообучать модели. Это позволяет понять, по каким причинам тот или иной ИИ-агент пришел к определенному выводу в сложных роботизированных и IoT-системах.
Цифровая идентичность. Представьте, что у вас есть «цифровой двойник», который общается в сети от вашего имени, совершает транзакции и даже голосует в DAO. Чтобы такой агент не вышел из-под контроля, нужны четкие механизмы идентификации и ограничения прав — децентрализованная цифровая идентичность (DID). Вы указываете, где и как агент может действовать, а блокчейн подтверждает личность и сохраняет неизменность записей.
Интернет ончейн-агентов. В результате мы получаем целый «интернет агентов». Каждый пользователь создает ИИ-агента, обученного на собственных данных, и делегирует ему часть рутинных задач, а все действия фиксируются в распределенной сети.
В перспективе это приведет к созданию новой экономики интеллектуальных услуг. Пользователи будут отправлять запросы в сеть, а рой ИИ-агентов самостоятельно распределит задачи, выберет оптимальные методы и исполнителей, а затем выполнит работу.
Коллективная ответственность. Закрытые ИИ-модели напоминают «черный ящик», где все данные и алгоритмы контролирует одна корпорация. При децентрализованном обучении исходные данные распределены между участниками, и каждый может удостовериться в их подлинности. Ответственность за обучение делится между всеми, а не лежит на одном игроке.
Когда блокчейн-сеть использует вычислительные мощности не для поиска хешей, а для ИИ-задач, мы говорим о «майнинге вычислительных ресурсов». Это дает возможность тысячам частных узлов предоставить свои мощности для обучения ИИ и получать за это вознаграждение.
Думаю в ближайшее время появятся DAO для координации процесса обучения нейросетей. Они будут распределять вознаграждения и регулировать процесс на основе этических норм.
По-настоящему «умные» смарт-контракты. Сегодня смарт-контракты — это жестко прописанные правила, которые автоматически выполняются при соблюдении определенных условий.
Благодаря интеграции ИИ, можно анализировать данные в реальном времени, учитывать сложные факторы (рыночные условия, поведение пользователей, внешние события) и корректировать выполнение условий на лету.
Так появляются самообучающиеся смарт-контракты, которые повышают эффективность DeFi-протоколов, оптимизируют распределение ресурсов в DAO и автоматически выявляют подозрительные транзакции.
Синергия ИИ и блокчейна — это закономерный этап эволюции обеих технологий. Блокчейн обеспечивает прозрачность и безопасность, а ИИ дает возможность адаптивно управлять сетью и решать сложные задачи, ранее лежавшие на человеке.
В итоге мы получаем экосистему, в которой можно безопасно обучать модели, бороться с фейками в соцсетях и даже создавать ИИ-агентов, действующих от нашего имени.
При этом механизм коллективной ответственности подчеркивает важную мысль: «мы в ответе за тех ИИ-агентов, которых обучили».
#мысли
Forbes
How AI And Blockchain Are Solving Each Other’s Biggest Challenges
Discover how AI and blockchain are joining forces to tackle challenges in transparency, scalability, and trust. Explore 3 projects leading decentralized AI innovation.
Почему мы не первые полетели в цифровой космос
Недавно руководитель агентства «Простыми словами» спросил меня: «Почему мы отстаем в гонке за ИИ»?
От западных компаний мы слышим о том, что вот-вот достигнем AGI, а скоро и суперинтеллекта. Конечно, есть те, кто говорит: «Сначала определитесь, что такое интеллект, а потом уже давайте громкие названия», и в этом есть доля правды. Но пора уже определить, что мы понимаем под интеллектом.
Мой путь в «машинном обучении» (ML) начался в 2012 году, когда я впервые услышал об этом термине на конференции Яндекса в Москве (тогда начался новый этап развития глубоких сетей). Будучи студентом Дальневосточного университета, я понял, что мои познания в математике и информатике могут помочь не только решать абстрактные задачи, но и прогнозировать болезни или предотвращать поломки самолетов. Так машинное обучение стало моим призванием.
Воодушевившись, я стал изучать зарубежную литературу, и добавил модуль на базе ML в курсовую работу по информационным системам. Во Владивостоке преподаватель впервые услышала об этом термине, у нас начался спор, и моя работа получила невысокий балл. К счастью, я учился не ради оценок, а в 2016 году, сдав идентичную работу в магистратуре ВШЭ в Москве, я получил высший балл и практику в SAP.
Тогда в Вышке утверждали, что «ИИ» – это маркетинг, и мы использовали термин «машинное обучение». Но уже через пару лет я стал аспирантом в департаменте анализа данных и «ИИ» (все таки маркетинг?) в ВШЭ. А окончательный переворот в терминологии произошел, когда в 2019-ом в Сбере мы запустили «ИИ-трансформацию» и увидели, какие колоссальные деньги экономит банк, решая задачи, которые раньше выполнял человек.
Понятие интеллекта все еще не определено, но все же можно сказать, что это способность системы решать задачи, используя внутреннюю модель мира. В языковых моделях язык и отражает «картину мира» (рекомендую к прочтению Витгенштейна), а с добавлением видео-модальности их уже официально называют «моделями мира».
Какая нам разница, что находится в «мозгу» у робота, если у него есть возможность совершить действия, способные навредить нам, основываясь на своей внутренней логике? Мы не можем четко прогнозировать поведение такой системы, т.к. она основывается не на детерминированных алгоритмах, а на внутренней обученной модели мира. Откуда нам знать на каких данных обучался этот робот?
Если так, то такого робота стоит воспринимать как интеллектуальную машину – когнитивную систему со всеми вытекающими особенностями, ведь в ее ядре находится модель мира, которая во многом англоязычная.
Сегодня при обучении русскоязычных моделей разработчики используют большой корпус англоязычных текстов. Для обучения русскоязычных моделей нужны качественные датасеты на русском, а контента в интернете значительно меньше, чем на английском. Здесь пригодится умение синтезировать новые данные.
Что касается вычислительных мощностей для обучения ИИ, то из-за санкций железа действительно не хватает, и все в той или иной мере зависят от Nvidia. Думаю, здесь может помочь децентрализованное обучение, в том числе на потребительских видеокартах.
Ну а новых кардинально революционных алгоритмов пока нет – есть «западный» трансформер, который работает на ура, его можно немного модифицировать и масштабировать.
Пусть мы не первые в ИИ-гонке, но рецепт для участия в ней прост: не нужно изобретать свой велосипед, нужно использовать лучшие международные практики и затачивать ИИ под решение прикладных задач, трансформируя компании и целые отрасли экономики.
Но следует принять простую идею: новая форма интеллекта уже здесь – пусть это и «перемножение матриц», и «оно работает не так, как человек», но оно действительно работает: обучается на наших данных и приносит пользу.
Уверен, рано или поздно эта идея получит более массовое принятие. А пока мы должны оставаться на передовой технологических прорывов, наблюдать за изменениями, рефлексировать и быстро адаптировать свою модель мира к постоянно меняющейся среде – ведь именно это и есть обучение собственного интеллекта.
#мысли
Недавно руководитель агентства «Простыми словами» спросил меня: «Почему мы отстаем в гонке за ИИ»?
От западных компаний мы слышим о том, что вот-вот достигнем AGI, а скоро и суперинтеллекта. Конечно, есть те, кто говорит: «Сначала определитесь, что такое интеллект, а потом уже давайте громкие названия», и в этом есть доля правды. Но пора уже определить, что мы понимаем под интеллектом.
Мой путь в «машинном обучении» (ML) начался в 2012 году, когда я впервые услышал об этом термине на конференции Яндекса в Москве (тогда начался новый этап развития глубоких сетей). Будучи студентом Дальневосточного университета, я понял, что мои познания в математике и информатике могут помочь не только решать абстрактные задачи, но и прогнозировать болезни или предотвращать поломки самолетов. Так машинное обучение стало моим призванием.
Воодушевившись, я стал изучать зарубежную литературу, и добавил модуль на базе ML в курсовую работу по информационным системам. Во Владивостоке преподаватель впервые услышала об этом термине, у нас начался спор, и моя работа получила невысокий балл. К счастью, я учился не ради оценок, а в 2016 году, сдав идентичную работу в магистратуре ВШЭ в Москве, я получил высший балл и практику в SAP.
Тогда в Вышке утверждали, что «ИИ» – это маркетинг, и мы использовали термин «машинное обучение». Но уже через пару лет я стал аспирантом в департаменте анализа данных и «ИИ» (все таки маркетинг?) в ВШЭ. А окончательный переворот в терминологии произошел, когда в 2019-ом в Сбере мы запустили «ИИ-трансформацию» и увидели, какие колоссальные деньги экономит банк, решая задачи, которые раньше выполнял человек.
Понятие интеллекта все еще не определено, но все же можно сказать, что это способность системы решать задачи, используя внутреннюю модель мира. В языковых моделях язык и отражает «картину мира» (рекомендую к прочтению Витгенштейна), а с добавлением видео-модальности их уже официально называют «моделями мира».
Какая нам разница, что находится в «мозгу» у робота, если у него есть возможность совершить действия, способные навредить нам, основываясь на своей внутренней логике? Мы не можем четко прогнозировать поведение такой системы, т.к. она основывается не на детерминированных алгоритмах, а на внутренней обученной модели мира. Откуда нам знать на каких данных обучался этот робот?
Если так, то такого робота стоит воспринимать как интеллектуальную машину – когнитивную систему со всеми вытекающими особенностями, ведь в ее ядре находится модель мира, которая во многом англоязычная.
Сегодня при обучении русскоязычных моделей разработчики используют большой корпус англоязычных текстов. Для обучения русскоязычных моделей нужны качественные датасеты на русском, а контента в интернете значительно меньше, чем на английском. Здесь пригодится умение синтезировать новые данные.
Что касается вычислительных мощностей для обучения ИИ, то из-за санкций железа действительно не хватает, и все в той или иной мере зависят от Nvidia. Думаю, здесь может помочь децентрализованное обучение, в том числе на потребительских видеокартах.
Ну а новых кардинально революционных алгоритмов пока нет – есть «западный» трансформер, который работает на ура, его можно немного модифицировать и масштабировать.
Пусть мы не первые в ИИ-гонке, но рецепт для участия в ней прост: не нужно изобретать свой велосипед, нужно использовать лучшие международные практики и затачивать ИИ под решение прикладных задач, трансформируя компании и целые отрасли экономики.
Но следует принять простую идею: новая форма интеллекта уже здесь – пусть это и «перемножение матриц», и «оно работает не так, как человек», но оно действительно работает: обучается на наших данных и приносит пользу.
Уверен, рано или поздно эта идея получит более массовое принятие. А пока мы должны оставаться на передовой технологических прорывов, наблюдать за изменениями, рефлексировать и быстро адаптировать свою модель мира к постоянно меняющейся среде – ведь именно это и есть обучение собственного интеллекта.
#мысли
ИИ-революция: как за 3 шага трансформировать сервисный бизнес в ИИ-продукт
Современный мир диктует новые правила игры: ИИ перестает быть лишь инструментом для автоматизации внутренних процессов, но позволяет сделать услуги доступнее.
Как сервисному бизнесу применить накопленный опыт и данные для превращения в продуктовую компанию?
1. Обучение сотрудников – база для будущих инноваций.
Сегодня специалисты различных областей активно осваивают ИИ-инструменты: по данным Coursera, спрос на курсы по ИИ вырос на 1100% за год.
Так SMM-специалисты используют ИИ для создания контента, разработчики внедряют инструменты типа Cursor, рекрутеры упрощают обработку резюме, а менеджеры по продажам анализируют диалоги с клиентами.
Около 62% работодателей считают базовые навыки в ИИ обязательными для сотрудников, а 22% рекрутеров обновили описания вакансий с акцентом на эти навыки.
Сегодня каждый должен внедрять ИИ в свою работу, чтобы повысить свою ценность на рынке и выполнять задачи быстрее и качественнее конкурентов.
Если вы фрилансите – берите больше заказов, если работаете в корпорации – будет больше времени для личной жизни.
Если вы предприниматель, внедрение ИИ во все функции компании – от разработки до маркетинга – приведет к росту метрик, от ускорения разработки до увеличения продаж.
Для обучения сотрудников пригодятся онлайн-курсы, готовые ИИ-продукты, буткемпы или привлечение ИИ-консультантов.
Но специалисты также должны адаптировать свои навыки к новым реалиям, постоянно самообучаться и применять новые знания на практике - это обоюдный процесс.
2. Аугментация процессов – от ручного труда к управлению ИИ-сотрудниками.
Этот этап предполагает не замену, а усиление возможностей сотрудников, превращая их в менеджеров ИИ-сотрудников (или операторов ИИ-систем).
Они берут на себя ответственность за автоматизацию и контроль ключевых бизнес-процессов, а также за разметку данных для обучения ИИ.
Для этого компании создают внутренние ИИ-платформы, ускоряющие рабочие процессы.
Разработайте стратегию ИИ-трансформации: смоделируйте ключевые бизнес-процессы, установите их метрики и отранжируйте самые ресурсоемкие операции, оптимальные для автоматизации с помощью ИИ.
Используйте инструменты вроде Langchain / Langgraph, CrewAI или n8n (без кода) для создания ИИ-сотрудников.
На этом этапе эксперты размечают работу ИИ-сотрудников, что позволяет дообучать модели под специфические задачи и создавать вертикальные решения.
Например, в юридической сфере ИИ способен автоматизировать заполнение различных форм, освобождая юристов от рутинных задач.
А Amazon, внедрив ИИ в процессы разработки, сумела сэкономить свыше 4500 лет работы – 79% сгенерированного кода было принято без изменений.
3. Упаковка внутреннего ИИ и выпуск продукта на рынок.
В результате у компании появляются собственные модели, способные решать специализированные задачи лучше, чем ChatGPT или DeepSeek.
Данные, на которых обучают ИИ, становятся «новой нефтью» – стратегическим технологическим преимуществом.
Таким образом, сервисные компании могут предлагать услуги ИИ-сотрудника напрямую клиенту, сильно снизив затраты.
Индустрия вертикальных ИИ-решений оценивается свыше $300 млрд, но несмотря на существование продуктов вроде Replit, ни одно решение пока не способно полностью заменить человеческий труд.
Так, бенчмарк SWE-Lancer, включающий 1 488 реальных задач с платформы Upwork с общим объемом выплат в $1 млн, показывает, что только модель Claude 3.5 смогла заработать $403 000, но ни одна модель не решает все задачи.
Интересная бизнес-модель: Rocketable покупают компании по разработке ПО с годовой выручкой не менее $100 тыс и заменяют сотрудников на ИИ.
Если вы предприниматель и еще не внедрили ИИ в свои процессы, то это нужно было сделать еще вчера, ведь конкуренты уже обучают внутренний ИИ на данных своих сотрудников и планируют трансформацию в продуктовую компанию.
А тот, кто сможет автоматизировать создание ИИ-сотрудников, окажется на вершине эволюционной цепочки – это возможность на триллион, способная трансформировать целые секторы экономики.
#мысли
Современный мир диктует новые правила игры: ИИ перестает быть лишь инструментом для автоматизации внутренних процессов, но позволяет сделать услуги доступнее.
Как сервисному бизнесу применить накопленный опыт и данные для превращения в продуктовую компанию?
1. Обучение сотрудников – база для будущих инноваций.
Сегодня специалисты различных областей активно осваивают ИИ-инструменты: по данным Coursera, спрос на курсы по ИИ вырос на 1100% за год.
Так SMM-специалисты используют ИИ для создания контента, разработчики внедряют инструменты типа Cursor, рекрутеры упрощают обработку резюме, а менеджеры по продажам анализируют диалоги с клиентами.
Около 62% работодателей считают базовые навыки в ИИ обязательными для сотрудников, а 22% рекрутеров обновили описания вакансий с акцентом на эти навыки.
Сегодня каждый должен внедрять ИИ в свою работу, чтобы повысить свою ценность на рынке и выполнять задачи быстрее и качественнее конкурентов.
Если вы фрилансите – берите больше заказов, если работаете в корпорации – будет больше времени для личной жизни.
Если вы предприниматель, внедрение ИИ во все функции компании – от разработки до маркетинга – приведет к росту метрик, от ускорения разработки до увеличения продаж.
Для обучения сотрудников пригодятся онлайн-курсы, готовые ИИ-продукты, буткемпы или привлечение ИИ-консультантов.
Но специалисты также должны адаптировать свои навыки к новым реалиям, постоянно самообучаться и применять новые знания на практике - это обоюдный процесс.
2. Аугментация процессов – от ручного труда к управлению ИИ-сотрудниками.
Этот этап предполагает не замену, а усиление возможностей сотрудников, превращая их в менеджеров ИИ-сотрудников (или операторов ИИ-систем).
Они берут на себя ответственность за автоматизацию и контроль ключевых бизнес-процессов, а также за разметку данных для обучения ИИ.
Для этого компании создают внутренние ИИ-платформы, ускоряющие рабочие процессы.
Разработайте стратегию ИИ-трансформации: смоделируйте ключевые бизнес-процессы, установите их метрики и отранжируйте самые ресурсоемкие операции, оптимальные для автоматизации с помощью ИИ.
Используйте инструменты вроде Langchain / Langgraph, CrewAI или n8n (без кода) для создания ИИ-сотрудников.
На этом этапе эксперты размечают работу ИИ-сотрудников, что позволяет дообучать модели под специфические задачи и создавать вертикальные решения.
Например, в юридической сфере ИИ способен автоматизировать заполнение различных форм, освобождая юристов от рутинных задач.
А Amazon, внедрив ИИ в процессы разработки, сумела сэкономить свыше 4500 лет работы – 79% сгенерированного кода было принято без изменений.
3. Упаковка внутреннего ИИ и выпуск продукта на рынок.
В результате у компании появляются собственные модели, способные решать специализированные задачи лучше, чем ChatGPT или DeepSeek.
Данные, на которых обучают ИИ, становятся «новой нефтью» – стратегическим технологическим преимуществом.
Таким образом, сервисные компании могут предлагать услуги ИИ-сотрудника напрямую клиенту, сильно снизив затраты.
Индустрия вертикальных ИИ-решений оценивается свыше $300 млрд, но несмотря на существование продуктов вроде Replit, ни одно решение пока не способно полностью заменить человеческий труд.
Так, бенчмарк SWE-Lancer, включающий 1 488 реальных задач с платформы Upwork с общим объемом выплат в $1 млн, показывает, что только модель Claude 3.5 смогла заработать $403 000, но ни одна модель не решает все задачи.
Интересная бизнес-модель: Rocketable покупают компании по разработке ПО с годовой выручкой не менее $100 тыс и заменяют сотрудников на ИИ.
Если вы предприниматель и еще не внедрили ИИ в свои процессы, то это нужно было сделать еще вчера, ведь конкуренты уже обучают внутренний ИИ на данных своих сотрудников и планируют трансформацию в продуктовую компанию.
А тот, кто сможет автоматизировать создание ИИ-сотрудников, окажется на вершине эволюционной цепочки – это возможность на триллион, способная трансформировать целые секторы экономики.
#мысли
Как учиться в два раза быстрее, чтобы просто оставаться на месте
Меня часто спрашивают, что сейчас лучше изучать, чтобы быть востребованным. Но сегодня скорость появления технологий невероятно высока. Кажется вопрос нужно поставить по-другому: как успевать ориентироваться в этом потоке информации, учиться новому и сразу применять полученные знания на практике?
Расскажу свою историю. В детстве дед внушил мне идею, что люди начинают умирать тогда, когда перестают учиться. Поэтому учеба для меня стала делом выживания, но давалась легко: чтобы быть отличником, я мог даже не стараться, а реальный интерес был только к олимпиадам.
После школы я проучился в универе 10 лет, пройдя аспирантуру на ФКН Вышки. Именно тогда стало по-настоящему интересно: у меня появилась тема исследования (методы автоматического машинного обучения, AutoML) и специализированная программа, идеально подходящая под мое направление.
Каждую неделю выходило несколько статей по моей теме, и мне приходилось читать их вечером после работы. Позже я применял новые знания на практике: например, автоматизировал выявление признаков у моделей в стратегическом департаменте Сбера, это улучшило их объяснимость и позволило экспертам принимать более обоснованные решения.
Что касается преподавания, то я проводил семинары по машинному обучению, но быстро понял, что это не мое. На занятиях по педагогике нужно было честно сформулировать свою мотивацию, и у меня она оказалась простой: систематизировать собственные знания, чтобы эффективнее использовать их на практике. «Мучать» студентов для этого не обязательно.
Хотя теперь я не учусь в универе, но продолжать учиться все равно нужно. Однако если раньше мне хватало читать десяток статей в неделю, то сегодня приходится читать десяток статей в день, чтобы оставаться в контексте.
Если вы сотрудник корпорации, то наверняка у вас есть внутренние курсы: компании заинтересованы в том, чтобы сотрудники поддерживали необходимый уровень знаний. Но что делать, если вы не сотрудник корпорации, и все равно хотите учиться, обязательно ли за это платить? Я, например, никогда не платил за обучение (победителей олимпиад зачисляли на бюджет) и далее не собираюсь.
Сейчас у меня своя компания по разработке ИИ-агентов для стартапов и корпораций. Приходится постоянно осваивать новые методы и инструменты, и в этом помогает ИИ. Каждый день с утра я просматриваю выжимки из последних научных работ из Hugging Face, которые готовит специальный бот, отмечаю самые интересные материалы и затем углубляюсь в детали. Тут ИИ помогает понять суть работы и методы более детально, а иногда я делаю обзоры на самые любопытные исследования.
Учиться новым инструментам удобно по роликам на YouTube — они выходят быстрее, чем полноценные курсы, и от них проще оттолкнуться, чтобы сразу начать применять полученные знания на практике. Обычно я прошу ИИ сгенерировать краткий текстовый конспект по видео. После этого начинаю использовать инструмент в реальных задачах, читаю документацию, разумеется, тоже с помощью ИИ.
Так, работая над одним проектом, я освоил LangChain. Но спустя пару месяцев появился новый фреймворк — LangGraph, а потом CrewAI и n8n. Инструменты развиваются, освобождая разработчиков от рутинного кодинга и превращая процесс в проектирование «когнитивных архитектур» ИИ-агентов. Чтобы не отстать, приходится постоянно «догонять» этот технологический локомотив.
Недавно услышал про стартап, который прошел в последний набор YC: он формирует программу курса из роликов на YouTube. Генерировать действительно персонализированные уроки сегодня дорого, но подобрать готовые материалы — вполне реально. Думаю, такой «инфоцыган на максималках» может действительно сделать курсы доступнее и индивидуальнее.
В нашей сфере приходится не только ежедневно поглощать огромный объем информации, но и осмыслять его, а затем применять на практике. А если вы еще и руководитель, то приходится учиться не только самому, но и развивать команду. Поскольку я не лучший преподаватель, то предпочитаю и этот процесс делегировать ИИ.
#мысли
Меня часто спрашивают, что сейчас лучше изучать, чтобы быть востребованным. Но сегодня скорость появления технологий невероятно высока. Кажется вопрос нужно поставить по-другому: как успевать ориентироваться в этом потоке информации, учиться новому и сразу применять полученные знания на практике?
Расскажу свою историю. В детстве дед внушил мне идею, что люди начинают умирать тогда, когда перестают учиться. Поэтому учеба для меня стала делом выживания, но давалась легко: чтобы быть отличником, я мог даже не стараться, а реальный интерес был только к олимпиадам.
После школы я проучился в универе 10 лет, пройдя аспирантуру на ФКН Вышки. Именно тогда стало по-настоящему интересно: у меня появилась тема исследования (методы автоматического машинного обучения, AutoML) и специализированная программа, идеально подходящая под мое направление.
Каждую неделю выходило несколько статей по моей теме, и мне приходилось читать их вечером после работы. Позже я применял новые знания на практике: например, автоматизировал выявление признаков у моделей в стратегическом департаменте Сбера, это улучшило их объяснимость и позволило экспертам принимать более обоснованные решения.
Что касается преподавания, то я проводил семинары по машинному обучению, но быстро понял, что это не мое. На занятиях по педагогике нужно было честно сформулировать свою мотивацию, и у меня она оказалась простой: систематизировать собственные знания, чтобы эффективнее использовать их на практике. «Мучать» студентов для этого не обязательно.
Хотя теперь я не учусь в универе, но продолжать учиться все равно нужно. Однако если раньше мне хватало читать десяток статей в неделю, то сегодня приходится читать десяток статей в день, чтобы оставаться в контексте.
Если вы сотрудник корпорации, то наверняка у вас есть внутренние курсы: компании заинтересованы в том, чтобы сотрудники поддерживали необходимый уровень знаний. Но что делать, если вы не сотрудник корпорации, и все равно хотите учиться, обязательно ли за это платить? Я, например, никогда не платил за обучение (победителей олимпиад зачисляли на бюджет) и далее не собираюсь.
Сейчас у меня своя компания по разработке ИИ-агентов для стартапов и корпораций. Приходится постоянно осваивать новые методы и инструменты, и в этом помогает ИИ. Каждый день с утра я просматриваю выжимки из последних научных работ из Hugging Face, которые готовит специальный бот, отмечаю самые интересные материалы и затем углубляюсь в детали. Тут ИИ помогает понять суть работы и методы более детально, а иногда я делаю обзоры на самые любопытные исследования.
Учиться новым инструментам удобно по роликам на YouTube — они выходят быстрее, чем полноценные курсы, и от них проще оттолкнуться, чтобы сразу начать применять полученные знания на практике. Обычно я прошу ИИ сгенерировать краткий текстовый конспект по видео. После этого начинаю использовать инструмент в реальных задачах, читаю документацию, разумеется, тоже с помощью ИИ.
Так, работая над одним проектом, я освоил LangChain. Но спустя пару месяцев появился новый фреймворк — LangGraph, а потом CrewAI и n8n. Инструменты развиваются, освобождая разработчиков от рутинного кодинга и превращая процесс в проектирование «когнитивных архитектур» ИИ-агентов. Чтобы не отстать, приходится постоянно «догонять» этот технологический локомотив.
Недавно услышал про стартап, который прошел в последний набор YC: он формирует программу курса из роликов на YouTube. Генерировать действительно персонализированные уроки сегодня дорого, но подобрать готовые материалы — вполне реально. Думаю, такой «инфоцыган на максималках» может действительно сделать курсы доступнее и индивидуальнее.
В нашей сфере приходится не только ежедневно поглощать огромный объем информации, но и осмыслять его, а затем применять на практике. А если вы еще и руководитель, то приходится учиться не только самому, но и развивать команду. Поскольку я не лучший преподаватель, то предпочитаю и этот процесс делегировать ИИ.
#мысли